S&P Global Offerings
Featured Topics
Featured Products
Events
S&P Global Offerings
Featured Topics
Featured Products
Events
S&P Global Offerings
Featured Topics
Featured Products
Events
S&P Global Offerings
Featured Topics
Featured Products
Events
Corporations
Financial Institutions
Banking & Capital Markets
Economy & Finance
Energy Transition & Sustainability
Technology & Innovation
Podcasts & Newsletters
Corporations
Financial Institutions
Banking & Capital Markets
Economy & Finance
Energy Transition & Sustainability
Technology & Innovation
Podcasts & Newsletters
RESEARCH — Sep 14, 2017
By Frank Zhao
Given the growing interest in NLP among investors, we are publishing this primer to demystify many aspects of NLP and provide three illustrations, with accompanying Python code, of how NLP can be used to quantify the sentiment of earnings calls. In our first example, sector-level sentiment trends are generated providing insights around inflection points and accelerations. The other two illustrations are: i) stock-level sentiment changes and forward returns, and ii) language complexity of earnings calls.
David Pope, CFA, S&P Global Market Intelligence’s Managing Director of Quantamental Research, recently discussed using natural language processing to unlock new insights in corporate earnings sentiment analysis. Click the player to view the video.
RESEARCH
Content Type
Products & Offerings